Effect of ring size in R-(+)-pulegone-mediated hepatotoxicity: studies on the metabolism of R-(+)-4-methyl-2-(1-methylethylidene)-cyclopentanone and DL-camphorone in rats.

نویسندگان

  • H V Thulasiram
  • V B Bhat
  • M K Madyastha
چکیده

R-(+)-Pulegone, a monoterpene ketone, is a potent hepatotoxin. The present study was designed to evaluate whether the reduction of the ring size in R-(+)-pulegone would affect its mode of metabolism and its hepatotoxic potential. Metabolic fate of R-(+)-4-methyl-2-(1-methylethylidene)-cyclopentanone (I) and 5-methyl-2-(1-methylethylidene)-cyclopentanone (DL-camphorone; II) were examined in rats. Compounds I and II were administered orally (250 mg/kg of b.wt./day) to rats for 5 to 7 days. The following metabolites were isolated and identified from the urine of rats dosed with I: 3-methyl-5-(1-methylethylidene)-cyclopent-2-enone (Ie), Z-4-methyl-2-(1-hydroxymethylethylidene)-cyclopentanone (Ib), E-4-methyl-2-(1-hydroxymethylethylidene)-cyclopentanone (Ia), 3-hydroxy-4-methyl-2-(1-methylethylidene)-cyclopentanone (If), 4-hydroxy-4-methyl-2-(1-methylethylidene)-cyclopentanone (Ic), and E-4-methyl-2-(1-carboxyethylidene)-cyclopentanone (Id). Phenobarbital (PB)-induced rat liver microsomes in the presence of NADPH transformed compound I into metabolites, which were identified as Ia, Ib, Ic, Ie, and If. The following urinary metabolites were isolated and identified from compound II: 5-hydroxy-5-methyl-2-(1-methylethylidene)-cyclopentanone (IIc), 5-hydroxy-5-methyl-2-(1-methylethyl)-cyclopentanone (IIg), Z-5-methyl-2-(1-hydroxymethylethylidene)-cyclopentanone (IIb), 5-methyl-2-(1-hydroxymethylethyl)-cyclopentanone (IIf), E-5-methyl-2-(1-hydroxymethylethylidene)-cyclopentanone (IIa), E-5-methyl-2-(1-carboxyethylidene)-cyclopentanone (IId), and 5-methyl-2-(1-carboxyethyl)-cyclopentanone (IIe). PB-induced rat liver microsomes in the presence of NADPH were shown to transform compound II to IIa, IIb, and IIc. Studies carried out in vitro demonstrated that hydroxylation at the tertiary carbon atom or oxidation of the isopropylidene methyl groups in II can be specifically blocked through structural modifications as seen in compounds 2,2-dimethyl-5-(1-methylethylidene)-cyclopentanone (III) and 5-methyl-2-(1-ethyl-1-propylidene)-cyclopentanone (IV). Similar observation was also made when isopropylidene methyl groups in R-(+)-pulegone were replaced by ethyl groups. Intraperitoneal administration of a single dose (250 mg/kg) of I and II to rats did not elicit hepatotoxicity as judged by serum alanine aminotransaminase levels and liver microsomal drug metabolizing enzyme activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of C-5 chiral center in R-(+)-pulegone-mediated hepatotoxicity: metabolic disposition and toxicity of 5, 5-dimethyl-2-(1-Methylethylidene)-cyclohexanone in rats.

Metabolic disposition of 5, 5-dimethyl-2-(1-methylethylidene)-cyclohexanone (I) was examined in rats. Compound (I) was administered orally (250 mg/kg of body weight/day) to rats for 5 days. The following urinary metabolites were isolated and identified: 4,5,6,7-tetrahydro-3,6, 6-trimethylbenzofuran (III), 3,3-dimethylcyclohexanone (VI), 5, 5-dimethyl-3-hydroxy-2-(1-methylethylidene)-cyclohexano...

متن کامل

Role of C-5 Chiral Center in R-(1)-pulegone-mediated Hepatotoxicity: Metabolic Disposition and Toxicity of 5,5-dimethyl-2-(1- Methylethylidene)-cyclohexanone in Rats

Metabolic disposition of 5,5-dimethyl-2-(1-methylethylidene)-cyclohexanone (I) was examined in rats. Compound (I) was administered orally (250 mg/kg of body weight/day) to rats for 5 days. The following urinary metabolites were isolated and identified: 4,5,6,7-tetrahydro3,6,6-trimethylbenzofuran (III), 3,3-dimethylcyclohexanone (VI), 5,5-dimethyl-3-hydroxy-2-(1-methylethylidene)-cyclohexanone (...

متن کامل

Metabolism of (R)-(+)-menthofuran in Fischer-344 rats: identification of sulfonic acid metabolites.

(R)-(+)-Menthofuran is a metabolite of (R)-(+)-pulegone, the chief constituent of pennyroyal oil. Menthofuran has been shown to account for a significant percentage of pulegone toxicity through further metabolism to a reactive intermediate, an enonal (2-Z-(2'-keto-4'-methylcyclohexylidene)propanal). Hydration of the enonal followed by a 1,4-dehydration and rearrangement gives rise to diastereom...

متن کامل

The effects of Artemisia aucheri extract on hepatotoxicity induced by thioacetamide in male rats

Objective: Liver is an important organ that is exposed to many oxidant and carcinogenic agents, thus antioxidant compounds are beneficial for liver health. Artemisia contains flavonoid compounds and anti-diabetic, antioxidant, and anti-inflammatory properties. Due to possessing terpene and sesquiterpene compounds, this plant has antioxidant properties. This study was done to investigate the eff...

متن کامل

Hepatoprotective effect of Rosa canina fruit extract against carbon tetrachloride induced hepatotoxicity in rat

Objective: The present study was conducted to investigate the hepatoprotective activity of hydro-ethanolic fruit extract of Rosa canina (R. canina) against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Methods: Male Wistar albino rats were randomly divided into six groups of 8 animals of each, including control, toxic (CCl4), R. canina 250, 500, and 750 mg/kg + CCl4 and R. canina ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2001